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On the error term concerning the number of subgroups of
the groups Zm × Zn with m,n ≤ x

by

László Tóth (Pécs) and Wenguang Zhai (Beijing)

1. Introduction. Let Zm be the additive group of residue classes mod-
ulo m. For arbitrary positive integers m and n consider the group G :=
Zm×Zn, which is isomorphic to Zgcd(m,n)×Zlcm(m,n). When gcd(m,n) = 1,
G is cyclic and isomorphic to Zmn. When gcd(m,n) > 1, G has rank two. Let
s(m,n) and c(m,n) denote the total number of subgroups and the number
of cyclic subgroups of Zm × Zn, respectively.

Here s(m,n) and c(m,n) are multiplicative functions of two variables,
that is,

s(m,n) =
∏
p

s(pνp(m), pνp(n)),(1.1)

c(m,n) =
∏
p

c(pνp(m), pνp(n)),(1.2)

for all m,n ∈ N. Furthermore, for the rank two p-group Zpa × Zpb with
1 ≤ a ≤ b, one has the following formulas:

(1.3) s(pa, pb) =
(b−a+1)pa+2− (b−a−1)pa+1− (a+ b+3)p+(a+ b+1)

(p− 1)2

and

(1.4) c(pa, pb) = 2(1 + p+ p2 + · · ·+ pa−1) + (b− a+ 1)pa.

Hence, one can compute s(m,n) and c(m,n) by using (1.1), (1.3) and
(1.2), (1.4), respectively. However, the following more compact identities
hold for all m,n ∈ N:
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s(m,n) =
∑

d|m,e|n

gcd(d, e) =
∑

d|gcd(m,n)

φ(d)τ(m/d)τ(n/d),(1.5)

c(m,n) =
∑

d|m,e|n

φ(gcd(d, e)) =
∑

d|gcd(m,n)

(µ ∗ φ)(d)τ(m/d)τ(n/d).(1.6)

For general properties of the subgroup lattice of finite abelian groups,
see R. Schmidt [10] and M. Suzuki [11]. We note that formula (1.3) was
deduced by using Goursat’s lemma for groups in [3, 9], and using the concept
of the fundamental group lattice in [12, 13]. Formula (1.4) was given in [13].
Identities (1.5) and (1.6) were derived in [4] by a simple elementary method,
and in [14] by using Goursat’s lemma for groups.

W. G. Nowak and L. Tóth [7] studied the average orders of the functions
s(m,n) and c(m,n). Suppose x > 0 is a real number. Define

S(1)(x) :=
∑
m,n≤x

s(m,n), S(2)(x) :=
∑
m,n≤x

gcd(m,n)>1

s(m,n),

S(3)(x) :=
∑
m,n≤x

c(m,n), S(4)(x) :=
∑
m,n≤x

gcd(m,n)>1

c(m,n).

Here S(2)(x) and S(4)(x) denote the total number of subgroups and cyclic
subgroups, respectively, of the groupsZm×Zn having rank two, withm,n≤x.

W. G. Nowak and L. Tóth [7] proved that for every j with 1 ≤ j ≤ 4,

(1.7) S(j)(x) = x2
3∑
r=0

Aj,r logr x+O(x1117/701+ε),

where Aj,r (1 ≤ j ≤ 4, 0 ≤ r ≤ 3) are explicit constants, whose definitions
are omitted here. Note that 1117/701 = 1.593437 . . . . In fact, the error term
in (1.7) is O(x(3−θ)/(2−θ)+ε), where θ is the exponent in the Dirichlet divisor
problem for τ(n). The exponent 1117/701 is obtained from θ = 131/416 of
M. N. Huxley [5]. The asymptotic formula (1.7) holds for the slightly better
exponent 4427/2779 = 1.593019 . . . by using the exponent θ = 517/1648
obtained in [2]. Note that the limit of this approach is 11/7 = 1.571428 . . .
with θ = 1/4.

In this paper we shall prove the following theorem, which improves the
above error terms.

Theorem 1.1. The asymptotic formulas

S(j)(x) = x2
3∑
r=0

Aj,r logr x+O(x3/2(log x)6.5)

hold for every j with 1 ≤ j ≤ 4.



Number of subgroups of Zm × Zn 3

For the proof we use a multidimensional Perron formula and the complex
integration method.

Notation. Throughout this paper, N denotes the set of all positive
integers, φ is Euler’s totient function, µ is the Möbius function, ζ denotes
the Riemann zeta-function, and τk(n) denotes the number of ways n can be
written as a product of k positive integers (τ(n) = τ2(n)). Let n =

∏
p p

νp(n)

denote the prime power factorization of n ≥ 2, where the product is over
the primes p and all but a finite number of the exponents νp(n) are zero.

2. Preliminary lemmas

Lemma 2.1 ([7]). Suppose <z,<w > 1. Then

S(z, w) :=
∑
m≥1

∑
n≥1

s(m,n)

mznw
= ζ2(z)ζ2(w)ζ(z + w − 1)ζ−1(z + w),

C(z, w) :=
∑
m≥1

∑
n≥1

c(m,n)

mznw
= ζ2(z)ζ2(w)ζ(z + w − 1)ζ−2(z + w).

Lemma 2.2. Suppose that r ≥ 2 is a fixed integer and f(n1, . . . , nr) is
an arithmetical function of r variables that is symmetric in n1, . . . , nr and
whose Dirichlet series

F (z1, . . . , zr) :=
∑
n1≥1

· · ·
∑
nr≥1

f(n1, . . . , nr)

nz11 · · ·n
zr
r

is absolutely convergent for <zj > σa (1 ≤ j ≤ r) with some σa > 0. Suppose
x, T ≥ 10 are two parameters, and define

b = σa +
1

log x
, Tj = 2j−1T (1 ≤ j ≤ r).

Then∑
n1≤x

· · ·
∑
nr≤x

f(n1, . . . , nr)h

(
x

n1

)
· · ·h

(
x

nr

)

=
1

(2πi)r

b+iT1�

b−iT1

· · ·
b+iTr�

b−iTr

F (z1, . . . , zr)x
z1+···+zr dzr · · · dz1

zr · · · z1
+O(xrσaEf (x, T )),

where

Ef (x, T ) :=
∑
n1≥1

· · ·
∑
nr≥1

|f(n1, . . . , nr)|(n1 · · ·nr)−σa−1/log x

min1≤j≤r T |log(x/nj)|+ 1
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and

h(y) :=


1 if y > 1,

1/2 if y = 1,

0 if 0 < y < 1.

Proof. This is a multiple type Perron formula, which easily follows from
[1, Propositions 5 and 6].

Lemma 2.3. Suppose ` = 0 or ` = 1. For σ > 1 we have

ζ(`)(σ + it)� min

(
1

(σ − 1)1+`
, log1+`(|t|+ 2)

)
,

ζ−1(σ + it)� min

(
1

σ − 1
, log(|t|+ 2)

)
.

Proof. The first estimate for ` = 0 can be found in Pan and Pan [8,
Chapter 7]. The first estimate for ` = 1 follows from the result for ` = 0 and
Cauchy’s theorem. The second estimate can also be found in Pan and Pan
[8, Chapter 7].

Lemma 2.4. Suppose ` = 0 or ` = 1. Then for 1/2 ≤ σ ≤ 1 we have

ζ(`)(σ + it)� (|t|+ 2)(1−σ)/3 log1+`(|t|+ 2).

Proof. The estimate for ` = 0 follows from the bounds

ζ(1/2 + it)� (|t|+ 2)1/6,

ζ(1 + it)� log(|t|+ 2)

and the Phragmén–Lindelöf principle. The estimate for ` = 1 follows from
the result for ` = 0 and Cauchy’s theorem.

Lemma 2.5. Suppose V > 10 is a large parameter and |u − 1/2| ≤
1/log V . Then

V�

−V
|ζ(u+ iv)|4 dv � V log4 V,(2.1)

V�

−V
|ζ(u+ iv)|2 dv � V log V,(2.2)

V�

−V
|ζ ′(1/2 + iv)|2 dv � V log3 V,(2.3)

V�

−V
|ζ(u+ iv)|2 dv � V (0.6 < u < 2).(2.4)
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Proof. The estimates (2.1) and (2.2) can be found in Pan and Pan [8,
Chapter 25]. The estimate (2.3) follows from (2.2) and Cauchy’s theorem.
Actually, (2.4) holds for u > 1/2 + ε: see for example Ivić [6, (8.112)].

3. Proof of Theorem 1.1. We only prove the theorem for the func-
tion s(m,n), i.e., for the sums S(1)(x) and S(2)(x). The proof for c(m,n) is
similar.

By Lemmas 2.1 and 2.2 with r = 2 and σa = 1 we have

(3.1)
∑
m≤x

∑
n≤x

s(m,n)h

(
x

m

)
h

(
x

n

)
= I(x, T ) +O(x2E(x, T )),

where

I(x, T ) :=
1

(2πi)2

b+iT�

b−iT

b+2iT�

b−2iT

ζ2(z)ζ2(w)ζ(z + w − 1)xz+w

ζ(z + w)wz
dw dz,

E(x, T ) :=
∑
n≥1

∑
m≥1

s(m,n)(mn)−1−1/log x

T |log(x/n)|+ 1
+
∑
n≥1

∑
m≥1

s(m,n)(mn)−1−1/log x

T |log(x/m)|+ 1
,

and T is a parameter to be determined such that 10 ≤ T ≤ x/2.

3.1. Estimate of E(x, T ). Since s(m,n) is symmetric, that is, s(m,n)
= s(n,m), we have

(3.2) E(x, T ) = 2
∑
n≥1

∑
m≥1

s(m,n)(mn)−1−1/log x

T |log(x/n)|+ 1
.

Write ∑
n≥1

∑
m≥1

s(m,n)(mn)−1−1/log x

T |log(x/n)|+ 1
= E1 + E2 + E3,

where

E1 :=
∑
n≤x/2

∑
m≥1

s(m,n)(mn)−1−1/log x

T |log(x/n)|+ 1
,

E2 :=
∑

x/2<n≤2x

∑
m≥1

s(m,n)(mn)−1−1/log x

T |log(x/n)|+ 1
,

E3 :=
∑
n>2x

∑
m≥1

s(m,n)(mn)−1−1/log x

T |log(x/n)|+ 1
.
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If n ≤ x/2 or n > 2x then |log(x/n)| � 1, so by Lemma 2.1 (with z = w =
1 + 1/log x) and Lemma 2.3 we have

E1 + E3 � T−1
∑
n≥1

∑
m≥1

s(m,n)(mn)−1−1/log x(3.3)

= T−1ζ4(1 + 1/log x)ζ(1 + 2/log x)ζ−1(2 + 2/log x)

� T−1 log5 x.

So it suffices to bound E2. We have

(3.4) E2 �
∑

x/2<n≤2x

n−1

T |log(x/n)|+ 1

∑
m≥1

s(m,n)m−1−1/log x.

Recall that b = 1 + 1/log x. From (1.5) we have∑
m≥1

s(m,n)m−b =
∑
m≥1

∑
d|m, e|n

gcd(d, e)m−b =
∑
m≥1

m−b
∑

dm1=m, en1=n

gcd(d, e)

≤
∑
m≥1

m−b
∑

%d1m1=m, %e1n1=n

% =
∑

%e1n1=n

%
∑

%d1m1=m

(%d1m1)
−b

=
∑

%e1n1=n

%1−b
∑

d1m1=m

(d1m1)
−b � ζ2(b)τ3(n)� τ3(n) log2 x.

Inserting this estimate into (3.4) and noting that τ3(n)� nε we have

E2 �
log2 x

x

∑
x/2<n≤2x

τ3(n)

T |log(x/n)|+ 1
� xε

x
(E21 + E22 + E23),(3.5)

say, where

E21 :=
∑

x/2<n≤xe−1/T

1

T |log(x/n)|+ 1
,

E22 :=
∑

xe−1/T<n≤xe1/T

1

T |log(x/n)|+ 1
,

E23 :=
∑

xe1/T<n≤2x

1

T |log(x/n)|+ 1
.

For E22 we have

E22 �
∑

xe−1/T<n≤xe1/T
1� xe1/T − xe−1/T + 1� x/T.
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For E21 we have

E21 �
1

T

∑
x/2<n≤xe−1/T

1

|log(x/n)|

� 1

T

∑
[x]−xe−1/T≤k≤x/2

1

|log(x/([x]− k))|
(n = [x]− k)

� 1

T

∑
x/T�k≤x/2

1

log x− log([x]− k)
� 1

T

∑
x/T�k≤x/2

x

k
� x log x

T
.

Similarly, we deduce

E23 �
x log x

T
.

Inserting the above estimates into (3.5) we conclude that

(3.6) E2 �
xε

T
.

From (3.2), (3.3) and (3.6) we get the following proposition.

Proposition 3.1. If 10 ≤ T ≤ x/2, then

E(x, T )� xεT−1.

3.2. Evaluation of the integral I(x, T ) for the variable w. Consider
the rectangle domain formed by the four points w = b±2iT , w = 1/2±2iT .
In this domain the integrand

(3.7) g(z, w) :=
ζ2(z)ζ2(w)ζ(z + w − 1)xz+w

ζ(z + w)wz

has two poles, namely w = 1, which is a pole of order 2, and w = 2 − z,
a simple pole. By the residue theorem we get

(3.8) I(x, T ) = J1(x, T ) + J2(x, T ) +H1(x, T ) +H2(x, T )−H3(x, T ),

where

J1(x, T ) :=
1

2πi

b+iT�

b−iT
Resw=1 g(z, w) dz,

J2(x, T ) :=
1

2πi

b+iT�

b−iT
Resw=2−z g(z, w) dz,

H1(x, T ) :=
1

(2πi)2

b+iT�

b−iT
dz

b+2iT�

1/2+2iT

g(z, w) dw,
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H2(x, T ) :=
1

(2πi)2

b+iT�

b−iT
dz

1/2+2iT�

1/2−2iT

g(z, w) dw,

H3(x, T ) :=
1

(2πi)2

b+iT�

b−iT
dz

b−2iT�

1/2−2iT

g(z, w) dw.

We estimate H1(x, T ) first. In this case by Lemmas 2.3 and 2.4 we have
(noting that |t| ≤ T ), uniformly for 1/2 ≤ u ≤ b = 1 + 1/log x,

g(z, w) = g(b+ it, u+ 2iT )

� |ζ(b+ it)|2

|t|+ 1

xb+u

T
|ζ2(u+ 2iT )| |ζ(u+ 1/log x+ i(t+ 2T ))|

� log2 x

|t|+ 1
× x1+u

T
Tmax(1−u,0) log3 T

� x log5 x

T
× 1

|t|+ 1
× xuTmax(1−u,0).

So we get

(3.9) H1(x, T )� x log5 x

T

T�

−T

1

|t|+1
dt
( 1�

1/2

xuT 1−u du+

b�

1

xu du
)
� x2 log6 x

T
.

Similarly, we have

(3.10) H3(x, T )� x2 log6 x

T
.

Now we estimate H2(x, T ). In this case by Lemmas 2.3 and 2.4 we have,
with |t| ≤ T , |v| ≤ 2T ,

g(z, w) = g(b+ it, 1/2 + iv)

� |ζ(b+ it)|2

|t|+ 1

xb+1/2

|v|+ 1
|ζ2(1/2 + iv)| |ζ(1/2 + 1/log x+ i(t+ v))|

� x3/2 log2 x× |ζ(1/2 + iv)|2|ζ(1/2 + 1/log x+ i(t+ v))|
(|t|+ 1)(|v|+ 1)

.

Hence

(3.11) H2(x, T )

� x3/2 log2 x

T�

−T
dt

2T�

−2T

|ζ(1/2 + iv)|2|ζ(1/2 + 1/log x+ i(t+ v))|
(|t|+ 1)(|v|+ 1)

dv

� x3/2 log2 x
(	

1 +
	
2

)
,

where
	
1 =

	
|v|≤|t| and

	
2 =

	
|t|≤|v|.
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We first estimate
	
1. Let L1(v) :=

	v
0 |ζ(1/2+iy)|2 dy. By (2.2) and partial

summation we get

(3.12)

V�

−V

|ζ(1/2 + iv)|2

|v|+ 1
dv

� 1 +

V�

1

|ζ(1/2 + iv)|2

v
dv = 1 +

V�

1

dL1(v)

v

� 1 +
L1(V )

V
+

V�

1

L1(v)

v2
dv � log V +

V�

1

log v

v
dv � log2 V.

From the estimate (2.2) and Cauchy’s inequality we get

T�

0

|ζ(1/2 + 1/log x+ iy)| dy � T log1/2 T,

which by partial summation yields

(3.13)

2T�

−2T

|ζ(1/2 + 1/log x+ iy)| dy
|y|+ 1

� log1.5 T.

Note that in
	
1 we have

|t+ v|+ 1 ≤ |t|+ |v|+ 1 ≤ 2(|t|+ 1).

Thus from (3.12) and (3.13) we get

	
1 =

�

|v|≤|t|

|ζ(1/2 + iv)|2|ζ(1/2 + 1/log x+ i(t+ v))|
(|v|+ 1)(|t+ v|+ 1)

× |t+ v|+ 1

|t|+ 1
dv dt

(3.14)

≤ 2

T�

−T

|ζ(1/2 + iv)|2

|v|+ 1
dv

�

|v|≤|t|

|ζ(1/2 + 1/log x+ i(t+ v))|
|t+ v|+ 1

dt

≤ 2

T�

−T

|ζ(1/2 + iv)|2

|v|+ 1
dv

2T�

−2T

|ζ(1/2 + 1/log x+ iy)|
|y|+ 1

dy

� (log T )3.5 � (log x)3.5.

Now we estimate
	
2. Similar to (3.12), by (2.1) and (2.2) we get

V�

−V

|ζ(1/2 + iv)|4

|v|+ 1
dv � log5 V,

V�

−V

|ζ(1/2 + 1/log x+ iv)|2

|v|+ 1
dv � log2 V.

(3.15)
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Note that in
	
2,

|t+ v|+ 1 ≤ |t|+ |v|+ 1 ≤ 2(|v|+ 1), so
1

|v|+ 1
≤ 2

|t+ v|+ 1
.

Thus via (3.15) we obtain

	
2 =

�

|t|≤|v|

|ζ(1/2 + iv)|2|ζ(1/2 + 1/log x+ i(t+ v))|
(|t|+ 1)(|v|+ 1)

dv dt

≤
T�

−T

dt

|t|+ 1

�

|t|≤|v|≤2T

|ζ(1/2 + iv)|2|ζ(1/2 + 1/log x+ i(t+ v))|
|v|+ 1

dv

≤ 2

T�

−T

dt

|t|+ 1

�

|t|≤|v|≤2T

|ζ(1/2 + iv)|2

(|v|+ 1)1/2
× |ζ(1/2 + 1/log x+ i(t+ v))|

(|t+ v|+ 1)1/2
dv

≤ 2

T�

−T

dt

|t|+ 1

2T�

−2T

|ζ(1/2 + iv)|2

(|v|+ 1)1/2
× |ζ(1/2 + 1/log x+ i(t+ v))|

(|t+ v|+ 1)1/2
dv

�
T�

−T

dt

|t|+ 1

( 2T�

−2T

|ζ(1/2 + iv)|4

|v|+ 1
dv

)1/2

×
( 2T�

−2T

|ζ(1/2 + 1/log x+ i(t+ v))|2

|t+ v|+ 1
dv

)1/2

�
T�

−T

dt

|t|+1

( 2T�

−2T

|ζ(1/2+iv)|4

|v|+ 1
dv

)1/2( 3T�

−3T

|ζ(1/2+1/log x+iy)|2

|y|+ 1
dv

)1/2
� (log T )4.5 � (log x)4.5,

which combined with (3.14) and (3.11) gives

(3.16) H2(x, T )� x3/2(log x)6.5.

Now we evaluate J2(x, T ). Since w = 2 − z is a simple pole of g(z, w),
we have

Resw=2−z g(z, w) =
x2

ζ(2)

ζ2(z)ζ2(2− z)
z(2− z)

.

From (2.4) by partial summation we get

(3.17)

∞�

T

|ζ(u+ iv)|2 dv
v2

� T−1, 0.6 < u < 2.
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So from (3.17) with u = 1− 1/log x and Lemma 2.3 we have

J2(x, T ) =
x2

ζ(2)
× 1

2πi

b+iT�

b−iT

ζ2(z)ζ2(2− z)
z(2− z)

dz

=
x2

ζ(2)
× 1

2πi

b+i∞�

b−i∞

ζ2(z)ζ2(2− z)
z(2− z)

dz

+O

(
x2
∞�

T

∣∣∣∣ζ2(z)ζ2(2− z)z(2− z)

∣∣∣∣ | dz|)

=
x2

ζ(2)
× 1

2πi

b+i∞�

b−i∞

ζ2(z)ζ2(2− z)
z(2− z)

dz

+O

(
x2
∞�

T

∣∣∣∣ζ2(1 + 1/log x+ it)ζ2(1− 1/log x− it)
t2

∣∣∣∣ dt)

=
x2

ζ(2)
× 1

2πi

b+i∞�

b−i∞

ζ2(z)ζ2(2− z)
z(2− z)

ds+O(x2T−1 log2 x).

We shall show that the integral in the last line is a constant. By the residue
theorem we have

1

2πi

b+i∞�

b−i∞

ζ2(z)ζ2(2− z)
z(2− z)

dz =
1

2πi

4/3+i∞�

4/3−i∞

ζ2(z)ζ2(2− z)
z(2− z)

dz.

By (3.17) with u = 2/3 we see that the integral on the right-hand side is
absolutely convergent. Hence

J2(x, T ) = Cx2 +O(x2T−1 log2 x),(3.18)

where C is an absolute constant.
Finally, we evaluate J1(x, T ). We shall use the following easy fact: if G(s)

is analytic at s = 1, then

(3.19) Ress=1 ζ
2(s)G(s) = G′(1) + 2γG(1),

where γ is the Euler constant.
Define

Gz(w) :=
ζ(z + w − 1)xw

ζ(z + w)w
.

It is easy to see that

G′z(w) =
ζ ′(z + w − 1)xw

ζ(z + w)w
+
ζ(z + w − 1)xw log x

ζ(z + w)w
(3.20)

− ζ(z + w − 1)ζ ′(z + w)xw

ζ2(z + w)w
− ζ(z + w − 1)xw

ζ(z + w)w2
.
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From (3.19) and (3.20) we have

Resw=1 g(z, w) =
ζ2(z)xz

z
(G′z(1) + 2γGz(1))(3.21)

=
ζ2(z)ζ ′(z)xz+1

zζ(z+1)
+
ζ3(z)xz+1 log x

zζ(z+1)
+h(z)

ζ3(z)xz+1

z
,

where

h(z) :=
2γ

ζ(z + 1)
− 1

ζ(z + 1)
− ζ ′(z + 1)

ζ2(z + 1)
.

From (3.21) we have

J1(x, T ) = J11(x, T ) + J12(x, T ) + J13(x, T ),(3.22)

where

J11(x, T ) :=
1

2πi

b+iT�

b−iT

ζ2(z)ζ ′(z)xz+1

zζ(z + 1)
dz,

J12(x, T ) :=
1

2πi

b+iT�

b−iT

ζ3(z)xz+1 log x

zζ(z + 1)
dz,

J13(x, T ) :=
1

2πi

b+iT�

b−iT
h(z)

ζ3(z)xz+1

z
dz.

By the residue theorem, we have

J11(x, T ) = Resz=1
ζ2(z)ζ ′(z)xz+1

zζ(z + 1)
(3.23)

+ L1(x, T ) + L2(x, T )− L3(x, T ),

where

L1(x, T ) :=
1

2πi

b+iT�

1/2+iT

ζ2(z)ζ ′(z)xz+1

zζ(z + 1)
dz,

L2(x, T ) :=
1

2πi

1/2+iT�

1/2−iT

ζ2(z)ζ ′(z)xz+1

zζ(z + 1)
dz,

L3(x, T ) :=
1

2πi

b−iT�

1/2−iT

ζ2(z)ζ ′(z)xz+1

zζ(z + 1)
dz.

Similar to the estimate for H1(x, T ), we have

(3.24) L1(x, T )� x2 log4 x

T
, L3(x, T )� x2 log4 x

T
.
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For L2(x, T ), by (2.1) and (2.3), Cauchy’s inequality and partial summation
we obtain

L2(x, T )� x3/2
T�

−T

|ζ(1/2 + it)|2|ζ ′(1/2 + it)|
|t|+ 1

dt(3.25)

� x3/2
( T�

−T

|ζ(1/2 + it)|4

|t|+ 1
dt

)1/2( T�

−T

|ζ ′(1/2 + it)|2

|t|+ 1
dt

)1/2
� x3/2 log4.5 T � x3/2 log4.5 x.

Since z = 1 is the pole of ζ2(z)ζ ′(z) of degree 4, we have

Resz=1
ζ2(z)ζ ′(z)xz+1

zζ(z + 1)
= x2

3∑
j=0

aj logj x,

where aj are computable constants. So from (3.23)–(3.25) we get

J11(x, T ) = x2
3∑
j=0

aj logj x+O

(
x2 log4 x

T
+ x3/2 log4.5 x

)
.(3.26)

Similarly,

J12(x, T ) = x2
3∑
j=0

bj logj x+O

(
x2 log4 x

T
+ x3/2 log4.5 x

)
,(3.27)

J13(x, T ) = x2
3∑
j=0

cj logj x+O

(
x2 log4 x

T
+ x3/2 log4.5 x

)
,(3.28)

where bj and cj are constants such that b0 = c3 = 0.

From (3.1), (3.8)–(3.10), (3.12), (3.16), (3.18), (3.22), (3.26)–(3.28) and
Proposition 3.1 we get

(3.29)
∑
m,n≤x

s(m,n)h

(
x

m

)
h

(
x

n

)

= x2
3∑
r=0

A1,r logr x+O

(
x2+ε

T
+ x3/2 log6.5 x

)

= x2
3∑
r=0

A1,r logr x+O(x3/2 log6.5 x)

by choosing T = x/4, where

A1,r = ar + br + cr (r = 1, 2, 3), A1,0 = a0 + b0 + c0 + C.
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3.3. Completion of proof. Suppose N ≥ 10 is an integer. We shall
give an upper bound of the sum∑

m≤N
s(m,N).

By (1.5) we have∑
m≤N

s(m,N) =
∑
m≤N

∑
d|m, e|N

gcd(d, e) =
∑
m≤N

∑
%d1m1=m, %e1n1=N

%

=
∑

%e1n1=N

%
∑

%d1m1≤N
1 =

∑
%e1n1=N

%
∑

e1m1≤N/%

1

�
∑

%e1n1=N

%× N

%
log

N

%
� Nτ3(N) logN � N1+ε.

If x > 1 is not an integer, then∑
m,n≤x

s(m,n) =
∑
m,n≤x

s(m,n)h

(
x

m

)
h

(
x

n

)
.

If x > 1 is an integer, then∑
m,n≤x

s(m,n) =
∑
m,n≤x

s(m,n)h

(
x

m

)
h

(
x

n

)
+

1

2

∑
n≤x

s(x, n) +
1

2

∑
m≤x

s(m,x)− s(x, x)/4.

From the above three formulas we see that for any x > 1,∑
m,n≤x

s(m,n) =
∑
m,n≤x

s(m,n)h

(
x

m

)
h

(
x

n

)
+O(x1+ε),

which combined with (3.29) completes the proof of the asymptotic formula
for S(1)(x) =

∑
m,n≤x s(m,n).

Furthermore, from (1.5) we have

(3.30) S(2)(x) = S(1)(x)− U(x), where U(x) :=
∑
m,n≤x

gcd(m,n)=1

τ(m)τ(n).

From [7, Lemma 3.3] we have

(3.31) U(x) = x2(b2 log2 x+ b1 log x+ b0) +O(x4/3+ε),

where bj (j = 0, 1, 2) are explicit constants.

Now the required asymptotic formula for S(2)(x) follows from (3.30),
(3.31) and our result for S(1)(x).
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[1] M. Balazard, M. Naimi et Y.-F. S. Pétermann, Étude d’une somme arithmétique
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[14] L. Tóth, Subgroups of finite Abelian groups having rank two via Goursat’s lemma,
Tatra Mt. Math. Publ. 59 (2014), 93–103.

László Tóth
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