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1. Periodic functions

An arithmetic function f : N → C is called periodic if there is a number r ∈ N
such that f (n + r) = f (n) for all n ∈ N. This is equivalent to the condition:
f (n1) = f (n2) for all n1, n2 ∈ N, n1 ≡ n2 (mod r). Here r is called the period of
the function f and we say that f is periodic (mod r).

If f is periodic (mod r), then it can be extended to a function defined on Z, denoted
also by f , such that f (n1) = f (n2) for every n1, n2 ∈ Z, n1 ≡ n2 (mod r).

Examples. 1) The function f (n) = (n, r), where (n, r) is the gcd of n and r, is
periodic (mod r).

2) e(n) := exp(2πin/r) = cos(2πn/r) + i sin(2πn/r) is periodic (mod r). Here
the values of e(n) are the roots of unity of order r. More generally, ek(n) :=
exp(2πikn/r) is also periodic (mod r), where k ∈ N is fixed and ek(n) are the k-th
powers of the roots of unity of order r.

3) The function cr(n) :=
∑

k (mod r)
(k,r)=1

exp(2πikn/r), called Ramanujan sum, is also

periodic (mod r), here the sum is over a reduced residue system (mod r).
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If r is a period of the function f , then each multiple of r is also a period. There
exists a least (positive) period. What is the set of all periods?

The answer is given by

Theorem 1.1. If r1 and r2 are periods of the function f , then the gcd (r1, r2)
is also a period. The least period divides each period, therefore the set of
periods is the set of multiples of the least period.

Proof. There exist u, v ∈ Z such that (r1, r2) = ur1 + vr2. Using that r1 and r2
are periods,

f (n + (r1, r2)) = f (n + ur1 + vr2) = f (n + ur1) = f (n)

for all n. If r0 is the least period and r is an other period, then (r0, r) is also one,
and since r0 ≤ (r0, r) we obtain r0 | r. �
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Theorem 1.2.∑
k (mod r)

ek(n) =
∑

k (mod r)

exp(2πikn/r) =

{
r, if r | n,
0, if r - n.

Proof. Let ε = exp(2πin/r). By the formula for the sum of geometric sequences,∑
k (mod r)

exp(2πikn/r) =

r−1∑
k=0

εk =

{
r, if ε = 1,
εr−1
ε−1 = 0, if ε 6= 1,

where ε = 1 iff r | n. �

Remark. A usual notation is e(x) := exp(2πix), x ∈ Q. If a ≡ b (mod r), then
e(ar) = e( br), and this is the property that gives number theoretic importance to
certain trigonometric sums, involving e(x).

We show that every periodic function (mod r) can be written as a sum of the
functions ek(n) = exp(2πikn/r). More exactly,
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Theorem 1.3. If the function f is periodic (mod r), then f can be written as

(1) f (n) =

r∑
k=1

g(k) exp(2πikn/r), n ∈ N,

where the values g(k) are unique and are given by

(2) g(k) =
1

r

r∑
j=1

f (j) exp(−2πijk/r), 1 ≤ k ≤ r.

Proof. For all n ∈ N, F (n) :=

r∑
k=1

g(k) exp(2πikn/r) =

=

r∑
k=1

1

r

 r∑
j=1

f (j) exp(−2πijk/r)

 exp(2πikn/r) =

=
1

r

r∑
j=1

f (j)

r∑
k=1

exp(2πik(n− j)/r).

By Theorem 1.2. the inner sum is r if r | (n− j) ⇔ j ≡ n (mod r) and otherwise
it is 0. Hence F (n) = f (n).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Now suppose that f (n) van be written in the form (1) and also in this way:

(3) f (n) =

r∑
k=1

g′(k) exp(2πikn/r), n ∈ N.

We show that g(j) = g′(j) for all j. By (1) and (3)
r∑

k=1

(g(k)− g′(k)) exp(2πikn/r) = 0, n ∈ N.

Multiplying by exp(−2πijn/r) and summing we have:
r∑

n=1

r∑
k=1

(g(k)− g′(k)) exp(2πin(k − j)/r) = 0,

r∑
k=1

(g(k)− g′(k))

r∑
n=1

exp(2πin(k − j)/r) = 0,

and using again Theorem 1.2 we obtain (g(j) − g′(j))r = 0, consequently g(j) =
g′(j). �
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Remarks. 1. Formula (1) is called the finite Fourier expansion of f and the
values g(k) given by (2) are the Fourier coefficients of f .

2. The function g given by (2) is also periodic (mod r).

3. Let Pr denote the set of periodic functions (mod r), which is a complex linear
space with the addition of functions and pointwise multiplication. Moreover, Pr is
isomorphic to the euclidean space Cr, hence its dimension is r and the usual inner
product of Cr can be written here in this form:

〈f, g〉 =
1

r

∑
k (mod r)

f (k)g(k),

where the sum is over a complete system of residues (mod r) and g(k) is the complex
conjugate of g(k).

According to Theorem 1.2., the functions ej, 1 ≤ j ≤ r, given by ej(n) =
exp(2πijn/r) form an orthonormal system and the Fourier expansion of f is

f =

r∑
k=1

g(k)ek, where g(k) = 〈f, ek〉 =
1

r

r∑
j=1

f (j) exp(−2πijk/r),

which is Theorem 1.3, this is in fact the same proof as the proof of above.
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Exercises

1.1. H a) The Cauchy product of the functions f, g : N0 = {0, 1, 2, ...} → C is
given by

(f ⊗ g)(n) =

n∑
k=0

f (k)g(n− k) =
∑
k+`=n

f (k)g(`)

(where the sum has n + 1 terms).

Show that the set CN0 of functions f : N0 → C forms an integral domain with
respect to addition and Cauchy product. When has a function an inverse with
respect to the Cauchy product?

b) The Cauchy product of the periodic functions (mod r) f, g is defined by

(f � g)(n) =
∑

k+` ≡ n (mod r)

f (k)g(`),

where the sum is over the solutions (mod r) of the congruence k + ` ≡ n (mod r),
and the sum has r terms.

Observe that f � g is also periodic (mod r). What are the properties of this
operation?
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1.2. H Show that the Cauchy product of the exponential functions es(k) =
exp(2πisk/r) and et(`) = exp(2πit`/r) is∑

k+` ≡ n (mod r)

es(k)et(`) =

{
res(n) = r exp(2πisn/r), if s ≡ t (mod r) ,

0, otherwise.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2. Ramanujan sums

Ramanujan sums (S. Ramanujan, 1918) are defined by

cr(n) =
∑

k (mod r)
(k,r)=1

exp(2πikn/r),

where k runs through a reduced system of residues (mod r) and r, n ∈ Z, r ≥ 1.

Remarks. 1) The notation cr(n) = c(n, r) is also used.

2) If k ≡ k′ (mod r), then exp(2πikn/r) = exp(2πik′n/r), hence this definition is
correct, it does not depend on the choosed reduced system of residues.

3) cr(n) is the sum of n-th powers of the r-th primitive roots of unity.

4) If k runs through a complete system of residues (mod r), then by Theorem 1.2,

(1)
∑

k (mod r)

exp(2πikn/r) =

{
r, if r | n,
0, if r - n,

5) For n = 0, cr(0) = φ(r) is the Euler function.

6) For n = 1, cr(1) is the sum of the r-th primitive roots of unity, and this is exactly
the Möbius function µ(r), as it can be seen from the next result.
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Theorem 2.1. For all r, n ∈ Z, r ≥ 1 we have

cr(n) =
∑
d|(n,r)

dµ(r/d).

Moreover, all the values of cr(n) are real integers, therefore

cr(n) =
∑

k (mod r)
(k,r)=1

cos(2πkn/r).

Proof. cr(n) =
∑

k (mod r)

exp(2πikn/r)
∑
d|(k,r)

µ(d), where d | (k, r) ⇔ d | k and

d | r, and using the notation k = dj, cr(n) =

=
∑
d|r

µ(d)
∑

j (mod r/d)

exp(2πijn/(r/d)) =
∑
d|r

µ(d)

{
r
d, if r

d | n
0, otherwise

=
∑
d|r
r
d |n

µ(d)
r

d
,

using (1). Now let r
d = δ. Then cr(n) =

∑
δ|n
δ|r

δµ(
r

δ
) =

∑
δ|(n,r)

δµ(
r

δ
). �
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Remarks. 1. From Theorem 2.1 we have∑
d|r

cd(n) =

{
r, if r | n,
0, if r - n,

which can be shown also directly.

2. |cr(n)| ≤ min(σ(n), φ(r)) for all n, r ≥ 1, where σ(n) is the sum of divisors of
n and φ(r) is the Euler function.

Indeed, by Theorem 2.1, |cr(n)| ≤
∑

d|(n,r) d ≤
∑

d|n d = σ(n), and by definition

|cr(n)| ≤ φ(r) ≤ r.
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Theorem 2.2. The function cr(n) is multiplicative in r, that is crs(n) =
cr(n)cs(n) for all r, s ≥ 1, (r, s) = 1 (and for every fixed n ≥ 1). Moreover

cpa(n) =


pa − pa−1, if pa | n,
−pa−1, if pa - n, pa−1 | n,
0, if pa−1 - n.

Proof. Let

Ir(n) =

{
r, if r | n,
0, if r - n,

which is multiplicative in r (for all (r, s) = 1 we have rs | n ⇔ r | n, s | n), and
by Theorem 2.1,

(2) cr(n) =
∑
d|r

Id(n)µ(
r

d
),

showing that cr(n) is multiplicative in r, being the convolution of two multiplicative
functions (c◦(n) = I◦(n) ∗ µ). �

Remark. cr(n) is not multiplicative in n. Indeed, if for example p 6= q are primes,
then cp(p) = p− 1, cp(q) = −1 and cp(pq) = p− 1 6= −(p− 1) = cp(p)cp(q).
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Theorem 2.3. (Hölder identity) For all n, r ≥ 1,

cr(n) =
φ(r)µ(m)

φ(m)
, where m =

r

(n, r)
.

Proof. Both sides are multiplicative in r, hence it is enough to prove for r = pa,
a prime power ( H Exercise!). �

Theorem 2.4. (Orthogonality relation) If d | r and t | r, then

1

r

r∑
m=1

cd(m)ct(m) =

{
φ(d), if d 6= t,

0, if d = t.

Proof. Let r = dd1, r = tt1. Then
r∑

m=1

cd(m)ct(m) =

r∑
m=1

d∑
a=1

(a,d)=1

exp(2πiam/d)

t∑
b=1

(b,t)=1

exp(2πibm/t) =

=

d∑
a=1

(a,d)=1

t∑
b=1

(b,t)=1

r∑
m=1

exp(2πim(a/d + b/t)),



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

where a/d + b/t = (ad1 + bt1)/r and the inner sum, referring to m, is r if
r | (ad1 + bt1) and it is 0 otherwise (Theorem 1.2.) Here 1 ≤ d1 ≤ ad1 ≤ dd1 = r,
1 ≤ t1 ≤ bt1 ≤ tt1 = r, therefore 1 < ad1 + bt1 ≤ 2r and the equality is valid iff
d = t = 1, since (a, d) = (b, t) = 1.

If d > 1 or t > 1, then r | (ad1 + bt1) ⇔ ad1 + bt1 = r ⇔ add1t + bdtt1 = rdt⇔
at + bd = dt⇔ d = t and a + b = d. The proof of the last equivalence:

,,⇒” d | at, t | bd ⇒ d | t, t | d since (a, d) = (b, t) = 1, hence d = t, a + b = d.
,,⇐” is trivial. We obtain that for d = t the sum of above is

r
d∑
a=1

(a,d)=1

d∑
b=1

(b,d)=1

∑
a+b=d

1 = rφ(d),

since there are φ(d) possible values of a, and for each there is exactly one value of
b. �
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Theorem 2.5. a) If r, s ∈ N, then∑
n≤x

cr(n)cs(n) =

{
φ(r)x +O(1), if r = s,

O(1), if r 6= s.

b) If r ∈ N, then ∑
n≤x

cr(n) =

{
x +O(1), if r = 1,

O(1), if r > 1.

Proof. a) Let r, s be fixed and [x] = (rs)q + α, where 0 ≤ α < rs. Then∑
n≤x

cr(n)cs(n) =

(rs)q∑
n=1

cr(n)cs(n) +

[x]∑
n=(rs)q+1

cr(n)cs(n) = Σ1 + Σ2.

Here |Σ2| ≤
∑[x]

n=(rs)q+1 rs < (rs)2 is bounded in x and by Theorem 2.4

Σ1 = φ(r)[x] = φ(r)x +O(1) for r = s, and Σ1 = 0 for r 6= s.

b) Let s = 1, then cs(n) = 1 for every n and apply Part a). �



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

We say that an arithmetic function f has a mean value if the limit M(f ) =

lim
x→∞

1

x

∑
n≤x

f (n) exists.

According to Theorem 2.5 the product cr(n)cs(n) and cr(n) possess a mean value
given by

M(crcs) =

{
φ(r), if r = s,

0, if r 6= s,
M(cr) =

{
1, if r = 1,

0, if r > 1.

The estimate of
∑

n≤x cr(n) can be given also by the first formula of Theorem 2.1.
If r = 1, then c1(n) = 1 and it is immediate that

∑
n≤x c1(n) = [x] = x + R(x),

where R(x) = −{x} ∈ (−1, 0]. In case r > 1 we have the following result.
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Theorem 2.6. If r > 1 and x ≥ 1, then |
∑

n≤x cr(n)| ≤ ψ(r), where ψ(r) =
r
∏

p|r(1 + 1/p) is the Dedekind function.

Proof. Using the first formula of Theorem 2.1 we obtain∑
n≤x

cr(n) =
∑
n≤x
d|(n,r)

dµ(r/d) =
∑
d|r

dµ(r/d)
∑

n=dk≤x

1 =
∑
d|r

dµ(r/d)[x/d] =

=
∑
d|r

dµ(r/d)(x/d− {x/d}) = x
∑
d|r

µ(r/d)−
∑
d|r

dµ(r/d){x/d} =

= −
∑
d|r

dµ(r/d){x/d} = Rr(x),

where |Rr(x)| ≤
∑

d|r dµ
2(r/d) = ψ(r). �

Other orthogonality properties of Ramanujan sums are given in the following the-
orem.
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Theorem 2.7. (Orthogonality properties) If r | k and s | k, then

(3)
∑
d|k

cr(k/d)cd(k/s) =

{
k, if r = s,

0, if r 6= s,

(4)
∑
d|k

φ(d)cr(k/d)cs(k/d) =

{
kφ(r), if r = s,

0, if r 6= s.

Proof. We prove relation (3), where k/s has to be an integer, this is why we have
condition s | k. The other condition r | k will be used in the proof. By Theorem
2.1,

S :=
∑
d|k

cr(k/d)cd(k/s) =
∑
d|k

cd(k/s)
∑

δ|(r,k/d)

δµ(r/δ).

Let r = δ`, k/d = δm, then

S =
∑
δ`=r
δdm=k

δµ(r/δ)cd(k/s) =
∑
δ|(r,k)

δµ(r/δ)
∑
d|kδ

cd(k/s),
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where (r, k) = r and the inner sum is k
δ for k

δ |
k
s ⇔ s | δ and it is 0 otherwise.

Cosequently,

S =
∑
δ|r
s|δ

δµ(r/δ)
k

δ
= k

∑
δ|r
s|δ

µ(r/δ),

here for each term s | r, therefore S = 0 if s - r. If s | r, then denoting r = δu, δ =
st,

S = k
∑
stu=r

µ(
r

st
) = k

∑
t|rs

µ(
r/s

t
) =

{
k, if r/s = 1,

0, otherwise.

To prove (4) we need the following: If r | k, s | k, then

(5) φ(r)cs(k/r) = φ(s)cr(k/s).

This is true, since by the Hölder identity (Theorem 2.3),

φ(r)cs(k/r) =
φ(r)φ(s)µ( s

(s,k/r))

φ( s
(s,k/r))

, φ(s)cs(k/s) =
φ(s)φ(r)µ( r

(r,k/s))

φ( r
(r,k/s))

,
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where
s

(s, k/r)
=

r

(r, k/s)
. Now by (5) and (3),∑

d|k

φ(d)cr(k/d)cs(k/d) =
∑
d|k

φ(s)cd(k/s)cr(k/d) =

= φ(s)
∑
d|k

cr(k/d)cd(k/s) =

{
kφ(r), if r = s,

0, if r 6= s.
�
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Theorem 2.8. The Dirichlet series of the Ramanujan sum cr(n), as a function
in r, is

∞∑
n=1

cr(n)

rs
=
σs−1(n)

ns−1ζ(s)
, n ≥ 1,Re s > 1,

where σk(n) =
∑

d|n d
k and ζ is the Riemann zeta function.

Proof. cr(n) is bounded in r, since |cr(n)| ≤ σ(n) (see above), the series is
absolutely convergent for Re s > 1 and cr(n) = (In ∗ µ)(r), where In(d) = d for
d | n and In(d) = 0 for d - n (Theorem 2.2). We obtain

∞∑
r=1

cr(n)

rs
=

∞∑
r=1

In(r)

rs

∞∑
r=1

µ(r)

rs
=

∞∑
r=1
r|n

r

rs
· 1

ζ(s)
=

=
1

ζ(s)

∑
r|n

r1−s =
σ1−s(n)

ζ(s)
=
σs−1(n)

ns−1ζ(s)
. �
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Remarks. 1. For s = 2 we obtain

σ(n)

n
=
π2

6

∞∑
r=1

cr(n)

r2
=
π2

6

(
1 +

(−1)n

22
+

2 cos(2πn/3)

32
+

2 cos(πn/2)

42
+ · · ·

)
,

where σ(n) =
∑

d|n d, showing how the values of σ(n)/n fluctuate harmonically

about their mean value π2/6.

2. A Fourier analysis of arithmetical functions, with respect to Ramanujan sums,
parallel to periodic and almost periodic functions, was developed by G. H. Hardy
(1921), E. Cohen (1960), J. Knopfmacher (1975), A. Hildebrand (1984),
W. Schwarz, J. Spilker(1994) and others.

They studied expansions, convergent pointwise or in other sense, of arithmetic func-
tions f of the form

f (n) =

∞∑
r=1

arcr(n), n ∈ N,

where the Ramanujan coefficients ar are

ar =
1

φ(r)
M(fcr).
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3. It can be shown that for s = 1,

∞∑
r=1

cr(n)

r
= 0. In this case

∑∞
r=1

µ(r)
r = 0 is

convergent, but not absolutely convergent (this is equivalent with the prime number
theorem).
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Exercises

2.1. H Show that if n ≥ 1, d | r and e | r, then the Cauchy product of cd(k) and
ce(`) is (see Exercises 1.1., 1.2.):∑

k+` ≡ n (mod r)

cd(k)ce(`) =

{
rcd(n), if d = e,

0, if d 6= e.

2.2. H Show that the Dirichlet series of cr(n), as a function in n, is
∞∑
n=1

cr(n)

ns
= ζ(s)φ1−s(r), r ≥ 1,Re s > 1,

where φt(r) =
∑

d|r d
tµ(r/d) is the generalized Euler function.
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3. Even functions

The function f : N → C is called even function (mod r) if f (n) = f ((n, r)) for
all n, that is if the value f (n) depends only on the gcd (n, r). Hence if f is even
(mod r), then it is sufficient to know the values f (d), where d | r.
Every function f which is even (mod r) is periodic (mod r), since f (n + r) =
f ((n+ r, r)) = f ((n, r)) = f (n) for all n. For example the functions f (n) = (n, r)
and f (n) = cr(n) are even functions (mod r).

Question: How can even functions (mod r) be characterized?

We show that every even function (mod r) is a linear combination of Ramanujan
sums. More exactly,

Theorem 3.1. If f is an even function (mod r), then f can be written in the
form

f (n) =
∑
q|r

h(q)cq(n), n ∈ N,

where the values h(q) are uniquely determined (Fourier coefficients of f) and

h(q) =
1

rφ(q)

∑
e|r

φ(e)f (r/e)cq(r/e) =
1

r

∑
e|r

f (r/e)ce(r/q), q | r.
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Proof. Similar to the proof of Theorem 1.3., using the orthogonality properties of
above.

Another way: Let Er denote the set of even functions (mod r), which is a complex
linear space with the addition of functions and poitwise multiplication. Furthermore
Er is isomorphic to the space Cτ(r), where τ (r) is the number of divisors of r. Hence
Er is a Hilbert space of dimension τ (r) and

〈f, g〉 =
1

r

∑
d|r

φ(d)f (r/d)g(r/d)

is an inner product, φ(d) denoting the Euler function, where g(r/d) is the complex
conjugate of g(r/d).

The functions c′q(n) = 1√
φ(q)

cq(n), where q | r, form an orthonormal basis. Indeed,

if q | r, t | r, then by (4),

〈c′q, c′t〉 =
1

r

∑
d|r

φ(d)c′q(r/d)c
′
t(r/d) =

=
1

r
√
φ(q)φ(t)

∑
d|r

φ(d)cq(r/d)ct(r/d) =

{
1, if q = t,

0, if q 6= t.
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We obtain that the Fourier expansion of f according to c′q (q | r) is

f (n) =
∑
q|r

j(q)c′q(n), n ∈ N,

where

j(q) = 〈f, c′q〉 =
1

r

∑
e|r

φ(e)f (r/e)c′q(r/e) =
1

r
√
φ(q)

∑
e|r

φ(e)f (r/e)cq(r/e).

Therefore

h(q) =
1√
φ(q)

j(q) =
1

rφ(q)

∑
e|r

φ(e)f (r/e)cq(r/e).

Using also (5),

h(q) =
1

rφ(q)

∑
e|r

φ(q)f (r/e)ce(r/q) =
1

r

∑
e|r

f (r/e)ce(r/q),

which was to be proved. �
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Theorem 3.2. (L. Tóth, 2004) If f is an even function (mod r), then there
exists the main value M(f ) of f and it is given by

M(f ) =
1

r
(f ∗ φ)(r).

Proof. According to Theorem 3.1, f can be written as f (n) =
∑

q|r h(q)cq(n),
n ∈ N, where

M(f ) =
∑
q|r

h(q)M(cq) = h(1) =
1

r

∑
e|r

φ(e)f (r/e)c1(r/e) =

=
1

r

∑
e|r

φ(e)f (r/e) =
1

r
(f ∗ φ)(r). �

Exercises

3.1. H Let f, g be even functions (mod r) with Fourier coefficients α(q) and β(q),
respectively. Prove that the Cauchy product f � g is also an even function (mod
r) having Fourier coefficients rα(q)β(q).

3.2. H If f is an even function (mod r), then according to Theorem 3.2, f has a main
value M(f ) and M(f ) = 1

r(f ∗φ)(r). Estimate the difference
∑

n≤x f (n)−xM(f ).
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3.3. H Let (s, d) = 1 and let φ(s, d, n) denote the number of elements in the
arithmetic progression s, s + d, ..., s + (n − 1)d which are coprime to n. This is a
generalization of the Euler function, φ(1, 1, n) = φ(n) is the Euler function. Prove
that

i) φ(s, d, n) is multiplicative in n,

ii) for every prime power pk, φ(s, d, pk) =

{
pk(1− 1/p), (p, d) = 1,

pk, p | d,
(these values do not depend on s),

iii)
∑
n≤x

φ(s, d, n) =
3d2

π2J(d)
x2+O(x log x), where J(d) = φ2(d) = d2

∏
p|d(1−1/p2)

is the Jordan function,

iv) f (d) := φ(s, d, n) =
φ(n)(n, d)

φ((n, d))
and this is an even function (mod n) in d,

v) M(f ) = n
∏
p|n

(1− 1/p + 1/p2).
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Solutions of the exercises

1.1. a) The Cauchy product of the functions f, g : N0 = {0, 1, 2, ...} → C is
given by

(f ⊗ g)(n) =

n∑
k=0

f (k)g(n− k) =
∑
k+`=n

f (k)g(`)

(where the sum has n + 1 terms).

Show that the set CN0 of functions f : N0 → C forms an integral domain with
respect to addition and Cauchy product. When has a function an inverse with
respect to the Cauchy product?

b) The Cauchy product of the periodic functions (mod r) f, g is defined by

(f � g)(n) =
∑

k+` ≡ n (mod r)

f (k)g(`),

where the sum is over the solutions (mod r) of the congruence k + ` ≡ n (mod r),
and the sum has r terms.

Observe that f � g is also periodic (mod r). What are the properties of this
operation?
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Solution. a) It is immediate that (CN0,+) is an abelian group, ⊗ is commutative,
distributive with respect to addition and ε(0) = 1, ε(n) = 0, n > 0 is the identity
element. Furthermore,

((f ⊗ g)⊗ h)(n) = (f ⊗ (g ⊗ h))(n) =
∑

k+`+m=n

f (k)g(`)h(m),

the operation is associative. There are no divisors of zero: let f, g 6= 0, where
f (a) 6= 0, f(b) 6= 0, and a, b are the least numbers with this property. Then

(f ⊗ g)(a + b) = f (a)g(b) +
∑

k+`=a+b
k 6=a, 6̀=b

f (k)g(`) = f (a)g(b) 6= 0,

since for k < a one has f (k) = 0, and if k > a, then ` < b and g(`) = 0.

f has an inverse f iff f (0) 6= 0 and in this case

f (0) =
1

f (0)
, f (n) = − 1

f (0)

n∑
k=1

f (k)f (n− k), n > 0.

b) � is commutative, associative, distributive to addition. There is no identity
element, since it would be ε(0) = 1, ε(n) = 0, n > 0, but this is not periodic.
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If Pr denotes the set of periodic functions (mod r), then (Pr,+,�) is a commutative
ring.

Remark. If f, g ∈ Pr, then in general f ⊗ g 6= f � g.
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1.2. Show that the Cauchy product of the exponential functions es(k) = exp(2πisk/r)
and et(`) = exp(2πit`/r) is∑

k+` ≡ n (mod r)

es(k)et(`) =

{
res(n) = r exp(2πisn/r), if s ≡ t (mod r) ,

0, otherwise.

Solution. ∑
k+` ≡ n (mod r)

exp(2πiks/r) exp(2πi`t/r) =

=
∑

k (mod r)
` ≡ n−k (mod r)

exp(2πiks/r) exp(2πi(n− k)t/r) =

= exp(2πint/r)
∑

k (mod r)

exp(2πik(s− t)/r),

which is r exp(2πins/r) = r exp(2πint/r) if s ≡ t (mod r) and 0 otherwise, see
Theorem 1.2.
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2.1. Show that if n ≥ 1, d | r and e | r, then the Cauchy product of cd(k) and
ce(`) is (see Exercises 1.1., 1.2.):∑

k+` ≡ n (mod r)

cd(k)ce(`) =

{
rcd(n), if d = e,

0, if d 6= e.

Solution. Let r = dd1, r = ee1. Then∑
k+` ≡ n (mod r)

cd(k)ce(`) =
∑

k+` ≡ n (mod r)

d∑
a=1

(a,d)=1

exp(2πiak/d)

e∑
b=1

(b,e)=1

exp(2πib`/e) =

=

d∑
a=1

(a,d)=1

e∑
b=1

(b,e)=1

∑
k+` ≡ n (mod r)

exp(2πiakd1/r) exp(2πib`e1/r) =

=

d∑
a=1

(a,d)=1

e∑
b=1

(b,e)=1

∑
ad1 ≡ be1 (mod r)

r exp(2πiad1n/r),

by Exercise 1.2. Here 1 ≤ d1 ≤ ad1 ≤ dd1 = r, 1 ≤ e1 ≤ be1 ≤ ee1 = r, hence
ad1 ≡ be1 (mod r) valid iff ad1 = be1 ⇔ ad1de = be1de⇔ are = bde⇔ ae = bd.
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But (a, d) = 1, (b, e) = 1, therefore a | b, b | a, that is a = b, d = e and obtain that
in this case the sum is

r

d∑
a=1

(a,d)=1

exp(2πian/d) = rcd(n).

If d 6= e, then each term is zero and the sum is also zero.
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2.2. Show that the Dirichlet series of cr(n), as a function in n, is
∞∑
n=1

cr(n)

ns
= ζ(s)φ1−s(r), r ≥ 1,Re s > 1,

where φt(r) =
∑

d|r d
tµ(r/d) is the generalized Euler function.

Solution. |cr(n)| ≤ r is bounded as a function in n, the series is absolutely
convergent for Re s > 1 and by Theorem 2.1,

∞∑
n=1

cr(n)

ns
=

∞∑
n=1

(
∑
d|(n,r)

dµ(r/d))
1

ns
=

∑
d|r

dµ(r/d)

∞∑
δ=1

1

(dδ)s
=

=
∑
d|r

d1−sµ(r/d)
∞∑
δ=1

1

δs
= ζ(s)φ1−s(r).
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3.1. H Let f, g be even functions (mod r) with Fourier coefficients α(q) and β(q),
respectively. Prove that the Cauchy product f � g is also an even function (mod
r) having Fourier coefficients rα(q)β(q).

Solution.

h(n) =
∑

k+` ≡ n (mod r)

f (k)g(`) =
∑

k+` ≡ n (mod r)

∑
q|r

α(q)cq(k)
∑
s|r

β(s)cs(`) =

=
∑
q|r

∑
s|r

α(q)β(s)
∑

k+` ≡ n (mod r)

cq(k)cs(`) =
∑
q|r

∑
s|r

α(q)β(s)
∑
q=s

rcq(n) =

=
∑
q|r

rα(q)β(q)cq(n),

using the result of Exercise 3.1. Here cr(n) is an even function (mod r) and for
q | r the function cq(n) is also even (mod r), hence h(n) is even (mod r) and the
Fourier coefficients of h(n) are exactly rα(q)β(q).
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3.2. H If f is an even function (mod r), then according to Theorem 3.2, f has a main
value M(f ) and M(f ) = 1

r(f ∗φ)(r). Estimate the difference
∑

n≤x f (n)−xM(f ).

Solution. Let Rf(x) =
∑

n≤x f (n)−xM(f ). By Theorem 3.2 and Theorem 2.5./
b) with the notations C1 = 1, Cq = 0, q > 1,∑
n≤x

f (n) =
∑
n≤x

∑
q|r

h(q)cq(n) =
∑
q|r

h(q)
∑
n≤x

cq(n) =
∑
q|r

h(q)(Cqx +Rq(x)) =

= h(1)x +
∑
q|r

h(q)Rq(x),

where h(1) = 1
r(f ∗ φ)(r) = M(f ), |h(q)| ≤ 1

r

∑
e|r |f (r/e)||ce(r/q)| ≤

≤ 1
r

∑
e|r |f (r/e)|e =

∑
e|r

|f(e)|
e and using also Theorem 2.6,

|Rf(x)| = |
∑
q|r

h(q)Rq(x)| ≤
∑
e|r

|f (e)|
e

∑
q|r

|Rq(x)| ≤
∑
e|r

|f (e)|
e

∑
q|r

ψ(q) =

= rF (r)
∑
e|r

|f (e)|
e

,

where F (r) =
∑

d|r ψ(d) = r
∏

p|r(1 + 2(1− p−k)(p− 1)−1).
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Remark. f is periodic, hence bounded, let |f (n)| ≤ K,n ≥ 1. Then |Rf(x)| ≤
KF (r)σ(r)/r. It is true that for all ε > 0, |Rf(x)| ≤ KCεr

1+ε, where Cε depends
only on ε, see the paper of L. Tóth, 2004, Proposition 1.
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3.3. H Let (s, d) = 1 and let φ(s, d, n) denote the number of elements in the
arithmetic progression s, s + d, ..., s + (n − 1)d which are coprime to n. This is a
generalization of the Euler function, φ(1, 1, n) = φ(n) is the Euler function. Prove
that

i) φ(s, d, n) is multiplicative in n,

ii) for every prime power pk, φ(s, d, pk) =

{
pk(1− 1/p), (p, d) = 1,

pk, p | d,
(these values do not depend on s),

iii)
∑
n≤x

φ(s, d, n) =
3d2

π2J(d)
x2+O(x log x), where J(d) = φ2(d) = d2

∏
p|d(1−1/p2)

is the Jordan function,

iv) f (d) := φ(s, d, n) =
φ(n)(n, d)

φ((n, d))
and this is an even function (mod n) in d,

v) M(f ) = n
∏
p|n

(1− 1/p + 1/p2).
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Solution. More generally, let f ∈ Z[X ] be a polynomial with integer coefficients
and let φf(n) denote the number of integers x (mod n) such that (f (x), n) = 1. If
f = s + (x− 1)d, then φf(n) = φ(s, d, n) for all n.

i) We show that φf is multiplicative. Let Nf(n) denote the number of solutions
(mod n) of the congruence f (x) ≡ 0 (mod n). Using the properties of the Möbius
function,

φf(n) =

n∑
x=1

(f(x),n)=1

1 =

n∑
x=1

∑
e|(f(x),n)

µ(e) =

n∑
x=1

∑
e|f(x)
e|n

µ(e) =

=
∑
e|n

µ(e)
∑

1≤x≤n
f(x) ≡ 0 (mod e)

1 =
∑
e|n

µ(e)
n

e
Nf(e).

Therefore φf = µNf ∗E, and since Nf(n) is multiplicative in n we obtain that φf
is multiplicative too.

ii) According to this convolutional identity we have for every prime power pk the
relation (*) φf(p

k) = pk − pk−1Nf(p) = pk(1−Nf(n)/p).
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Let f = s + (x − 1)d. How many solutions has the congruence s + (x − 1)d ≡ 0
(mod pk)? This is equivalent to dx ≡ d− s (mod pk), being a linear congruence.

If (p, d) = 1, then (pk, d) = 1 and obtain that Nf(p
k) = 1 for every k. If (p, d) 6= 1,

then (pk, d) = pa, a ≥ 1, and since (s, d) = 1 we obtain that p - d−s, consequently
Nf(p

k) = 0. Use now relation (*).

iii) For the function φ(s, d, n) using that Nf is bounded,∑
n≤x

φ(s, d, n) =
∑
ab≤x

µ(a)Nf(a)b =
∑
a≤x

µ(a)Nf(a)
∑
b≤x/a

b =

=
∑
a≤x

µ(a)Nf(a)(
x2

2a2
+O(

x

a
)) =

=
x2

2

∞∑
a=1

µ(a)Nf(a)

a2
+O(x2

∑
a>x

1

a2
) +O(x

∑
a≤x

1

a
) =

=
x2

2

∏
p

(1− Nf(p)

p2
) +O(x) +O(x log x) =

x2

2
C +O(x log x),

where C =
∏
p-d

(1− 1

p2
) =

∏
p

(1− 1

p2
)
∏
p|d

(1− 1

p2
)−1 =

1

ζ(2)
· d2

φ2(d)
.
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iv) By the multiplicativity and ii) we obtain at once:

φ(s, d, n) =
φ(n)(n, d)

φ((n, d))
= φ(n) · (n, d)

φ((n, d))
,

where the variable is d, φ(n) is fixed and (n,d)
φ((n,d)) depends only on the gcd (n, d) and

by definition it is an even function (mod n).

v) Use Theorem 3.2 for r = n.

Remark. The function φ(s, d, n) was investigated by P. G. Garcia and S. Ligh
(1983, 1985), see also the papers of L. Tóth (1987, 1990).

The function φf(n) was investigated by P. K. Menon (1967), and by H. Stevens
(1971). The asymptotic formula for φf(n) was established by L. Tóth and J.
Sándor (1989). The results of iv) and v) were proved by T. Maxsein (1990).
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