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1. Periodic functions

An arithmetic function f : N — C is called periodic if there is a number r € N
such that f(n 4+ r) = f(n) for all n € N. This is equivalent to the condition:
f(n1) = f(ng) for all ny,ny € N,ny = ny (mod 7). Here r is called the period of
the function f and we say that f is periodic (mod 7).

If f is periodic (mod r), then it can be extended to a function defined on Z, denoted
also by f, such that f(ny) = f(ng) for every ni,ns € Z, n1 = ny (mod r).

Examples. 1) The function f(n) = (n,r), where (n,r) is the ged of n and r, is
periodic (mod 7).

2) e(n) = exp(2min/r) = cos(2mn/r) + isin(2wn/r) is periodic (mod 7). Here
the values of e(n) are the roots of unity of order r. More generally, ex(n) =
exp(2mikn/r) is also periodic (mod r), where k € N is fixed and ey (n) are the k-th
powers of the roots of unity of order 7.

3) The function ¢,(n) := Z exp(2mikn/r), called Ramanujan sum, is also

k (mod 7)
(k,r)=1

periodic (mod 7), here the sum is over a reduced residue system (mod r).



If r is a period of the function f, then each multiple of r is also a period. There
exists a least (positive) period. What is the set of all periods?

The answer is given by
Theorem 1.1. If r; and ro are periods of the function f, then the ged (r1,73)

is also a period. The least period divides each period, therefore the set of
periods is the set of multiples of the least period.

Proof. There exist u,v € Z such that (ry,r2) = ury + vre. Using that r; and s
are periods,

f(n+(ri,m)) = f(n+ury +vra) = f(n+ury) = f(n)
for all n. If ry is the least period and r is an other period, then (rg, r) is also one,
and since ry < (19, 7) we obtain o | r. W



Theorem 1.2.

SO exp@mkn/r):{gz s

k (mod r) k (mod r)

Proof. Let € = exp(2min/r). By the formula for the sum of geometric sequences,

e = |
Z exp(2mikn/r) = Ze { \ . 7
k (mod r) —1 _07 1f€7é17
where e = 1iffr |n. B

Remark. A usual notation is e(z) := exp(2wix), x € Q. If a = b (mod ), then
e(2) = e(2), and this is the property that gives number theoretic importance to
certain trigonometric sums, involving e(x).

We show that every periodic function (mod r) can be written as a sum of the
functions eg(n) = exp(2wikn/r). More exactly,



Theorem 1.3. If the function f is periodic (mod r), then f can be written as

(1) Zg exp(2mikn/r), mn €N,
where the values g(k) are unique and are given by

2) o) = =3 fli)esp(—2mijhfr), 1S k<r

r

Proof. For alln € N, F(n) := Zg(k) exp(2mikn/r) =
k=1

. S 1 S f exp 27‘(‘2]]{/7“) exp(27m'k7n/7“) -
— IR
k=1

- _Zf Zexp 2mik(n — j)/r).

k=1

By Theorem 1.2. the inner sum is r if r | (n — j) < j = n (mod r) and otherwise
it is 0. Hence F(n) = f(n).



Now suppose that f(n) van be written in the form (1) and also in this way:
(3) Zg exp(2mikn/r), n € N.

We show that g(j) = ¢'(j) for all 5. By (1) and (3)

r

> "(g(k) — ¢'(k)) exp(2mikn/r) =0, n€N.

Multiplying by exp(—2mijn/r) and summing we have:

> > (g(k) — g'(k)) exp(2min(k — §)/r) =0,

n=1 k=1
> (g(k) = g'(k) > _ exp(2min(k - j)/r) =0,
k=1 =L

and using again Theorem 1.2 we obtain (g(7) — ¢'(j))r = 0, consequently g(j) =

g(j).



Remarks. 1. Formula (1) is called the finite Fourier expansion of f and the
values g(k) given by (2) are the Fourier coefficients of f.

2. The function g given by (2) is also periodic (mod r).

3. Let P, denote the set of periodic functions (mod r), which is a complex linear
space with the addition of functions and pointwise multiplication. Moreover, P, is
isomorphic to the euclidean space C", hence its dimension is r and the usual inner
product of C" can be written here in this form:

(hg—- > AT

where the sum is over a complete system of residues (mod r) and g(k) is the complex
conjugate of g(k).

Ee e oNiheorem 1.2., the functions e;, 1 < j < r, given by e(n)=
exp(2mijn/r) form an orthonormal system and the Fourier expansion of f is

i Zg(k)ek, where g(k) = (f, ex) Zf exp(—=2mijk/r),
k=1

which is Theorem 1.3, this is in fact the same proof as the proof of above.



Exercises

1.1. ¥ a) The Cauchy product of the functions f,g: Ny = {0,1,2,...} — C is
given by

(f®g)n Zf —k)= > f(k)g(e)

k+t=n
(where the sum has n + 1 terms).

Show that the set CNo of functions f : Ny — C forms an integral domain with
respect to addition and Cauchy product. When has a function an inverse with
respect to the Cauchy product?

b) The Cauchy product of the periodic functions (mod r) f, g is defined by

(F @ ool = N (V4]

k+¢ = n (mod r)
where the sum is over the solutions (mod ) of the congruence k + ¢ = n (mod r),
and the sum has r terms.

Observe that f ® g is also periodic (mod r). What are the properties of this
operation”?



1.2. ¥ Show that the Cauchy product of the exponential functions es(k) =
exp(2misk/r) and e (¢) = exp(2mwitl/r) is

Z eo(k)es(f) = {res(n) = rexp(2misn/r), if s=1t (modr),

U otherwise.
k+¢ = n (mod r)



2. Ramanujan sums

Ramanujan sums (S. RAMANUJAN, 1918) are defined by

el — Z exp(2mikn /1),
k (mod r)
(R R

where k runs through a reduced system of residues (mod r) and r,n € Z, r > 1.

Remarks. 1) The notation ¢.(n) = c¢(n,r) is also used.

2) If k = k' (mod r), then exp(2wikn/r) = exp(2mwik'n/r), hence this definition is
correct, it does not depend on the choosed reduced system of residues.

3) ¢r(n) is the sum of n-th powers of the r-th primitive roots of unity.

4) If k runs through a complete system of residues (mod r), then by Theorem 1.2,
if
(1) Z exp(2mikn/r) = {T’ TR

o 0, ifr{n,

5) For n =0, ¢,(0) = ¢(r) is the Euler function.

6) For n = 1, ¢,(1) is the sum of the r-th primitive roots of unity, and this is exactly
the Mobius function u(r), as it can be seen from the next result.



Theorem 2.1. For all r,n € Z,r > 1 we have

Moreover, all the values of ¢.(n) are real integers, therefore

cr(n) = Z cos(2mkn/r).
k (mod r)
(k,r)=1
Proof. ¢, (n) = Z exp(2mikn /T) Z w(d), where d | (k,7) < d | k and
k (mod r) d|(k,r)
d | r, and using the notation k = dj, ¢,(n) =

:ZM(d) Z exp(2mign/(r/d)) ZM {T’ loft;erwwe _Z
d|r

J (mod r/d) d|r :

-

’I°

using (1). Now let 5 = 4. Then ¢,.(n) = Z&u(g) = Z 5,u(§). |
d|n S| (n,r)
d|r



Remarks. 1. From Theorem 2.1 we have
r, IR
;Cd(n) A {O, iR i,
which can be shown also directly.

2. ey (n)| < min(o(n), ¢(r)) for all n,r > 1, where o(n) is the sum of divisors of
n and ¢(r) is the Euler function.

Indeed, by Theorem 2.1, |c;(n)| < >4y d < X g, d = 0(n), and by definition
|er(n)] < ¢(r) <.



Theorem 2.2. The function ¢, (n) is multiplicative in r, that is ¢.s(n) =
c.(n)es(n) for all r;s > 1,(r,s) =1 (and for every fixed n > 1). Moreover

p* — p™ A

cpa(n) = ¢ —p*7, if p*{ w,p e
0, if Pl
Proof. Let
) T %f 7N
0, iRl

which is multiplicative in r (for all (r,s) = 1 we have rs | n < r | n,s | n), and
by Theorem 2.1,

r
(2) er(n) =y Tu(n)u()
d|r
showing that ¢,(n) is multiplicative in r, being the convolution of two multiplicative
functions (co(n) = Io(n) * u). N

Remark. ¢,(n) is not multiplicative in n. Indeed, if for example p # ¢ are primes,
then ¢,(p) =p —1, ¢p(q) = —1 and ¢,(pg) =p — 1 # —(p — 1) = ¢y(p)cp(q).



Theorem 2.3. (Holder identity) For all n,r > 1,

(NS o\l where m = —

¢(m) (n,7)

Proof. Both sides are multiplicative in 7, hence it is enough to prove for r = p?,
a prime power ( ¥ Exercise!). W

Theorem 2.4. (Orthogonality relation) If d | r and t | r, then
BN _Je@), ifd#t,
S atmatn - {20 502

Proof. Let r = ddy, r = tt;. Then

r /
ch(m) Z Z exp(2miam /d) Z exp(2mibm /t) =
&' S (b1

d t i
= exp(2mim(a/d + b/t)),




where a/d + b/t = (ady + bt1)/r and the inner sum, referring to m, is r if
r | (ady + bt1) and it is 0 otherwise (Theorem 1.2.) Here 1 < dy < ady < ddy =,
1 <ty < bty <ttty = r, therefore 1 < ady + bt; < 2r and the equality is valid iff
GRS\ zince (g,d) = (b,1) = L
Ifd>1ort>1, thenr| (ady + bt1) & ady + bty = r < addit + bdtt; = rdt &
at +bd = dt < d =t and a + b = d. The proof of the last equivalence:
,=" d|at,t | bd = d|t,t|dsince (a,d) = (b,t) =1, henced =t,a+ b = d.
,<="1s trivial. We obtain that for d = ¢ the sum of above is

d

» 2 OB )

a=1 b=1 a+b=d
(a,d)=1 (b,d)=1

since there are ¢(d) possible values of a, and for each there is exactly one value of

b. A




Theorem 2.5. a) If r;s € N, then

] ¢(r)z + O R
Z ) = {(9(1), ifr # s.

n<x

b) If r € N, then
Zcr(n): z + O(1}, 1.1"7“:1,
O(1), IER N

n<x

Proof. a) Let r, s be fixed and [x] = (rs)q + «, where 0 < o < rs. Then

(r5)q
Z Elc(n) = Z cr(n)es(n Z = > + 2.

n<x n=1 (rs q—}—l

Here |¥s| < Z WP s < (rs)? is bounded in z and by Theorem 2.4
Y1 = o(r)|z] = ¢(r)x+ O(1) for r = s, and X1 = 0 for r # s.

b) Let s = 1, then ¢s(n) = 1 for every n and apply Part a). W



We say that an arithmetic function f has a mean value if the limit M(f) =

1
lim — ists.
Jim — ;f(n) exists
According to Theorem 2.5 the product ¢,(n)cs(n) and ¢.(n) possess a mean value
given by
GO — 5. 1, s
M(c,c;) = ) M(c,) = ;
(ercs) {O, if r # s, () 0, IR

The estimate of ) . ¢,(n) can be given also by the first formula of Theorem 2.1.
If r =1, then ¢i(n) = 1 and it is immediate that »  _ ci(n) = [z] = v + R(z),
where R( )= —{x} € (—1,0]. In case r > 1 we have the following result.



Theorem 2.6. If r > 1 and v > 1, then | ) _ ¢ (n)| < ¥(r), where ¥(r) =
r11,,(1+1/p) is the Dedekind function.

Proof. Using the first formula of Theorem 2.1 we obtain

SNoan)= Y dulr/d)= dulr/d) Y 1= du(r/d)z/d=
d|r

n<zx n<x n=dk<z d|r
d|(n,r)

= du(r/d)(x/d—{z/d}) =2 u(r/d) =Y du(r/d){z/d} =

d|r d|r d|r

= - du(r/d){z/d} = R.(z),

d|r
whete |, (z)] < Y, dii2(r/d) = $(r).

Other orthogonality properties of Ramanujan sums are given in the following the-
orem.



Theorem 2.7. (Orthogonality properties) If r | k and s | k, then

3) S e (k/d)call/s) = {’g ZZ ; ; .
m ) )
0 > o) (ke (k) = {gqﬁ“‘% e
dlk d '

Proof. We prove relation (3), where k/s has to be an integer, this is why we have
condition s | k. The other condition 7 | k will be used in the proof. By Theorem
2.1,

S => c(k/djcalk/s) =) cilk/s) > dulr/s).

d|k d|k 3|(rk/d)

Let r = 64, k/d = édm, then
SR Z op(r/d)ca(k/s) = Z op(r/o) ch k/s),

ol=r o|(r,k) d\
odm=k k)



where (r,k) = r and the inner sum is £ for £ | £ & s | § and it is 0 otherwise.

S
Cosequently;,

5 Sulr/o)s = k S utr/o),
s|d slé

here for each term s | r, therefore S = 0 if s { 7. If s | r, then denoting r = du, § =
St,

stu=r

r r/s k, if n/si=ule
oR—/ —) =k —) =
Z 'u(st) %;'u( t ) {O, otherwise.

To prove (4) we need the following: If r | k, s | k, then

(5) o(r)es(k/r) = ¢(s)er(k/s).
This is true, since by the Holder identity (Theorem 2.3),
B(r)es(k/r) = ¢(T)¢(3)M(m) e (s) — gb(s)qﬁ(r)u((rjk/s))

Heim)



where —> = Now by (5) and (3),

(s,k/r) (1 k/s)
> d(d)er(k/d)es(k/d) =) d(s)calk/s)er(k/d) =

d|k d|k

ko(r), =
%CT k/d)cq(k/s) = { 0. it p |




Theorem 2.8. The Dirichlet series of the Ramanujan sum ¢,.(n), as a function
nr, is

Z &) = 08_11(n> , n =1 Resh—i
T T ()

where oy,(n) = 4, d* and ( is the Riemann zeta function.

Proof. c¢,(n) is bounded in r, since |c.(n)| < a(n) (see above), the series is
absolutely convergent for Res > 1 and ¢.(n) = (I, * p)(r), where I,,(d) = d for
d | n and I,,(d) = 0 for d ¥ n (Theorem 2.2). We obtain

(1 2 L(7) o= u(r S\ 1
ORI




Remarks. 1. For s = 2 we obtain
T2 (=)™  2cos(2mn/3) 2cos(mn/2)
= FZ ( + + + +o0 ),

7 e 42
where o(n) = >, d, showing how the values of o(n)/n fluctuate harmonically

about their mean value 72 /6.

2. A Fourier analysis of arithmetical functions, with respect to Ramanujan sums,
parallel to periodic and almost periodic functions, was developed by G. H. HARDY

(1921), E. CoHEN (1960), J. KNOPFMACHER (1975), A. HILDEBRAND (1984),
W. SCHWARZ, J. SPILKER(1994) and others.

They studied expansions, convergent pointwise or in other sense, of arithmetic func-
tions f of the form

= iarcr(n), n e N,

r=1
where the Ramanujan coefficients a, are

1
G — MM(]CCT)



c(n)

3. It can be shown that for s = 1, Z

=l
convergent, but not absolutely convergent (this is equivalent with the prime number

theorem).

= 0. In this case ) -, @ = () s



Exercises

2.1. ¥ Show that if n > 1, d | r and e | r, then the Cauchy product of ¢4(k) and
ce(0) is (see Exercises 1.1., 1.2.):

reqgn), ifd=e,
k+¢ = n (mod r) i '

2.2. ¥ Show that the Dirichlet series of ¢.(n), as a function in n, is

Z CT,,E:L) = ((s)¢1-s(r), 7=1,Res>1,
=1l

where ¢(r) = >, d'u(r/d) is the generalized Euler function.



3. Even functions

The function f : N — C is called even function (mod r) if f(n) = f((n,r)) for
all n, that is if the value f(n) depends only on the ged (n, 7). Hence if f is even
(mod r), then it is sufficient to know the values f(d), where d | r.

Every function f which is even (mod r) is periodic (mod r), since f(n + r) =
f((n+r,r)) = f((n,r)) = f(n) for all n. For example the functions f(n) = (n,r)
and f(n) = c.(n) are even functions (mod 7).

Question: How can even functions (mod r) be characterized?

We show that every even function (mod r) is a linear combination of Ramanujan
sums. More exactly,

Theorem 3.1. If f is an even function (mod r), then f can be written in the

form
= h(g)cg(n), ne€N,

qlr
where the values h( ) are uniquely determined (Fourier coefficients of f) and

g clc(n/e) — Zf r/e)ce(r/q), q]r.

e|r elr




Proof. Similar to the proof of Theorem 1.3., using the orthogonality properties of
above.

Another way: Let &, denote the set of even functions (mod r), which is a complex
linear space with the addition of functions and poitwise multiplication. Furthermore
&, is isomorphic to the space C™"). where 7(r) is the number of divisors of r. Hence
&, is a Hilbert space of dimension 7'( ) and

= =3 8 /g /D)

d|r

is an inner product, ¢(d) denoting the Euler function, where g(r/d) is the complex
conjugate of g(r/d).
1

¢(a)
if ¢ | r,t|r, then by (4)

The functions cj(n) = cq(n), where ¢ | r, form an orthonormal basis. Indeed,

Zéb T/dCtT/CD

d|r

Jeq(r/d)e(r/d) = {

NN
NIfNg =~ 1.

Jiqu



We obtain that the Fourier expansion of f according to ¢ (¢ | r) is

=Y ila)e A

qlr
where
ia) = (. ) = 3" Bl f(r/e)cy(rfe) = flr/e)eqtr/e).
elr e|7"
Therefore
- e)f(r/e)c,(r/e
h(g) = ¢(q)](9) = w(q)Zfb( )f(r/e)ey(r/e)

Using also (5),

Zgb i e /q) = Zf r/e)ce(r/q),

which was to be proved. W



Theorem 3.2. (L. TOTH, 2004) If f is an even function (mod r), then there
exists the main value M (f) of f and it is given by

M(f) = ~(f % 9)r).

Proof. According to Theorem 3.1, f can be written as f(n) = )_ . h(g)cy(n),

n € N, where
:Zh(q)M(cq) Zgb f(r/e)ei(r/e) =
q|r elr
= 3" Hf(r/e) = (f *$)(r).
elr
Exercises

3.1. ¥ Let f, g be even functions (mod r) with Fourier coefficients «a(q) and ((q),
respectively. Prove that the Cauchy product f ® g is also an even function (mod
r) having Fourier coefficients ra(q)3(q).

3.2. VW If fisan even function (mod r), then according to Theorem 3.2, f has a main

value M(f) and M(f) = %(f*¢)(r). Estimate the difference Moz () S mAAE S



3.3. V¥ Let (s,d) = 1 and let ¢(s,d,n) denote the number of elements in the
arithmetic progression s, s + d, ..., s + (n — 1)d which are coprime to n. This is a
generalization of the Euler function, ¢(1,1,n) = ¢(n) is the Euler function. Prove
that

i) ¢(s,d,n) is multiplicative in n,

i) for every prime power p*, ¢(s, d,p") = f
p 9 p ’ d?

(these values do not depend on s),

2
iii) ; o(s,d,n) = Wzgj(d)x%r(’)(az log x), where J(d) = ¢o(d) = d? Hp,d(l—l/pz)
is the Jordan function,
iv) f(d) := ¢(s,d,n) = el 4) and this is an even function (mod n) in d,
¢((n, d))

v) M(f) =n ][ -1/p+1/p").

pln



Solutions of the exercises

1.1. a) The Cauchy product of the functions f,g : Ny = {0,1,2,...} — C is
given by

(f®g)n Zf —k)= > f(k)g(e)

k+t=n
(where the sum has n + 1 terms).

Show that the set CNo of functions f : Ny — C forms an integral domain with
respect to addition and Cauchy product. When has a function an inverse with
respect to the Cauchy product?

b) The Cauchy product of the periodic functions (mod r) f, g is defined by

(F @ ool = N (V4]

k+¢ = n (mod r)
where the sum is over the solutions (mod ) of the congruence k + ¢ = n (mod r),
and the sum has r terms.

Observe that f ® g is also periodic (mod r). What are the properties of this
operation”?



Solution. a) It is immediate that (CN0, 4) is an abelian group, ® is commutative,
distributive with respect to addition and £(0) = 1,e(n) = 0,n > 0 is the identity
element. Furthermore,

(f®g)®@h)(n)=(f (g h) Z f(k)g(O)h(m),

the operation is associative. There are no divisors of zero: let f,g # 0, where
fla) #0, f(b) # 0, and a, b are the least numbers with this property. Then

(f®g)a+b)= + ) flk f(a)g(b) # 0,

k+f=a-+b
k#a,l+b

since for k < a one has f(k) =0, and if £ > a, then ¢ < b and g(¢) = 0.
f has an inverse f iff £(0) # 0 and in this case

1 \ TN\

f(0) = o) Flin) — 2:: F)F(n— k), n> 0.

b) ® is commutative, associative, distributive to addition. There is no identity
element, since it would be £(0) = 1,&(n) = 0, n > 0, but this is not periodic.



If P, denotes the set of periodic functions (mod r), then (P,, +, ®) is a commutative
ring.

Remark. If f,g € P,, then in general f ® g # f ® g.



1.2. Show that the Cauchy product of the exponential functions e4(k) = exp(2misk/r)
and e;({) = exp(2mitl/r) is

res(n) = rexp(2misn/r), if s =+t (modr),
Z €S(k)€t(€) A\ ( ) p( / ) | ( )
0, otherwise.
k4+¢ = n (mod r)

Solution.
S" exp(2riks/r) exp(2mittfr) =

k+¢ = n (mod r)

- Z exp(2miks/r) exp(2mi(n — k)t/r) =
k (mod r)
¢ = n—k (mod r)

= exp(2mint/r) Z exp(2mik(s — t)/r),
k (mod r)
which is r exp(2mins/r) = rexp(2mint/r) if s =t (mod r) and 0 otherwise, see
Theorem 1.2.



2.1. Show that if n > 1, d | r and e | r, then the Cauchy product of cy(k) and
ce(0) is (see Exercises 1.1., 1.2.):

reqn), ifd=e,
k+¢ = n (mod r) y '

Solution. Let r = ddy, r = ee;. Then

e

d
Z ci(k)ce(€) = Z Z exp(2miak/d) exp(2mibl/e) =

k+¢ = n (mod ) k+¢ = n (mod r) (aadz)lzl (bb;1:1

d
. Z Z Z exp(2miakdy /1) exp(2mibley /1) =
T

d
= Z rexp(2miadin/r),

a=1  b=1 ad; = bey (mod r)

by Exercise 1.2. Here 1 < d; < ad; < ddy =r, 1 < e; < bey < ee; =r, hence
ady = bey (mod ) valid iff ad; = be; < adide = beyde < are = bde < ae = bd.



But (a,d) =1, (b,e) = 1, therefore a | b,b | a, that is @ = b, d = e and obtain that
in this case the sum is

d
r Z exp(2mian/d) = rcg(n).

a=1

(a,d)=1

If d # e, then each term is zero and the sum is also zero.



2.2. Show that the Dirichlet series of ¢.(n), as a function in n, is

ZCTTES) G(s)p1-s(r); 7 =NINNRCIE
n=1

where ¢¢(r) = >, d'pu(r/d) is the generalized Euler function.

Solution. |c.(n)| < r is bounded as a function in n, the series is absolutely
convergent for Res > 1 and by Theorem 2.1,

o0 o

Z Z d r/d

=l n=1 d|(n,r) d|r (5:1

= u(r/d) Z(Si_g Jp1_s(T).

d|r J




3.1. ¥ Let f, g be even functions (mod r) with Fourier coefficients a(q) and 5(q),
respectively. Prove that the Cauchy product f ® g is also an even function (mod
r) having Fourier coefficients ra(q)B(q).

Solution.
Apy= > fRe= ) D dldcEDIEEEEE
k+¢ = n (mod ) k+¢ = n (modr) g¢lr s|r
S 6s) > =D D a@)B(s) ) regn) =
qlr  s|r k+¢ = n (mod r) q|r s|r q=s
== Z TOZ

using the result of Exercise 3.1. Here ¢,(n) is an even function (mod r) and for
q | r the function c,(n) is also even (mod r), hence h(n) is even (mod r) and the
Fourier coefficients of h(n) are exactly ra(q)3(q).



3.2. W If fis an even function (mod r), then according to Theorem 3.2, f has a main
value M (f) and M(f) = X(f x¢)(r). Estimate the difference 3, _, f(n)—xM(f).

Solution. Let R¢(x) =), ., f(n)—xM(f). By Theorem 3.2 and Theorem 2.5./
b) with the notations C; =1,C, = 0,q > 1,

Zf(n):ZZh(chn Zh Z Zh W(Cpx + Ry(x)) =

n<x n<z g|r q|r N qlr
1)z + Zh
qlr
where h(1) = 2(f * ¢)(r) = M(f), |h(@)| < 7 3, [f(r/e)llee(r/a)] <
Z fle/elle = D . |f§3 I and using also Theorem 2.6,
Ry(@) = | Y h B, @) < 3 NS ) < 57 )
qlr elr qlr e|r qlr

B SiC

elr

whete F(r) = S, 9(d) = r [T, (1 + 21 — p~5)(p — 1))



Remark. f is periodic, hence bounded, let |f(n)| < K,n > 1. Then |Rs(z)| <
KF(r)o(r)/r. Tt is true that for all e > 0, |R¢(z)| < KC.r'*e, where C. depends
only on ¢, see the paper of L. TOTH, 2004, Proposition 1.



3.3. V¥ Let (s,d) = 1 and let ¢(s,d,n) denote the number of elements in the
arithmetic progression s, s + d, ..., s + (n — 1)d which are coprime to n. This is a
generalization of the Euler function, ¢(1,1,n) = ¢(n) is the Euler function. Prove
that

i) ¢(s,d,n) is multiplicative in n,

i) for every prime power p*, ¢(s, d,p") = f
p 9 p ’ d?

(these values do not depend on s),

2
iii) ; o(s,d,n) = Wzgj(d)x%r(’)(az log x), where J(d) = ¢o(d) = d? Hp,d(l—l/pz)
is the Jordan function,
iv) f(d) := ¢(s,d,n) = el 4) and this is an even function (mod n) in d,
¢((n, d))

v) M(f) =n ][ -1/p+1/p").

pln



Solution. More generally, let f € Z[X] be a polynomial with integer coefficients
and let ¢f(n) denote the number of integers « (mod n) such that (f(x),n) = 1. If
f=s4 (z —1)d, then ¢s(n) = ¢(s,d,n) for all n.

i) We show that ¢, is multiplicative. Let N¢(n) denote the number of solutions
(mod n) of the congruence f(x) = 0 (mod n). Using the properties of the Mobius

function,
Z 1= Z 5 ST

=1 ¢ z=1 ¢
e . s
n
S T i-Twetme
eln 1<z<n eln

f(z) = 0 (mod e)
Therefore ¢y = Ny * E, and since N¢(n) is multiplicative in n we obtain that ¢
is multiplicative too.

ii) According to this convolutional identity we have for every prime power p* the

relation (*) ¢¢(p*) = p* — p*"'N¢(p) = p*(1 — N¢(n)/p).



Let f = s+ (x — 1)d. How many solutions has the congruence s + (x — 1)d = 0
(mod p*)? This is equivalent to dr = d — s (mod p*), being a linear congruence.

If (p,d) = 1, then (p*, d) = 1 and obtain that N;(p*) = 1 for every k. If (p,d) # 1,
then (p*,d) = p% a > 1, and since (s, d) = 1 we obtain that p { d — s, consequently
N¢(p*) = 0. Use now relation (*).

iii) For the function ¢(s, d,n) using that Ny is bounded,

> (s,d,n) =) p(@)Ne(a)p =) p(a)Np(a) Y b=

n<x ab<z a<z b<z/a
=3 ua)Ny(a )+ o) =
B M(G)Nf 72
= ? Z Z a2 S8 O 33 Z
a=1 a>x a<x
z? N«(p T2
:?H(l— ]J;g ))+(’)(:I:)+O(:Ulogx):?C’JrO(xlog:U),
p
1 1 1 1 d?
where C = [l(1— ) =1 -5 )l : .
( pQ) [Tt pQ) It pQ) ¢(2) ¢2(d)



iv) By the multiplicativity and ii) we obtain at once:

¢(n)(n, d) (n, d)
gb(S, d7 TL) N N gb(”) ’ )
¢((n,d)) ¢((n,d))
where the variable is d, ¢(n) is fixed and ¢((Z;dcg)) depends only on the ged (n, d) and

by definition it is an even function (mod n).

v) Use Theorem 3.2 for r = n.

Remark. The function ¢(s, d, n) was investigated by P. G. GARCIA and S. Ligh
(1983, 1985), see also the papers of L. TOTH (1987, 1990).

The function ¢ ¢(n) was investigated by P. K. MENON (1967), and by H. STEVENS
(1971). The asymptotic formula for ¢¢(n) was established by L. TOTH and J.
SANDOR (1989). The results of iv) and v) were proved by T. MAXSEIN (1990).
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