1. Az n! értékei, ahol 1 ≤  n ≤ 20 (MAPLE):

 

       > x_n:=n!; seq(x_n,n=1..20);

 

       1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600,

       6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000,

       6402373705728000, 121645100408832000, 2432902008176640000

 

2. Az (n alatt k) binomiális együtthatók értékei, ahol 0 ≤ k ≤ n ≤ 10 (MAPLE):

 

       > seq([seq(binomial(n,k), k=0..n)], n=0..10);

 

       [1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1], [1, 5, 10, 10, 5, 1],

       [1, 6, 15, 20, 15, 6, 1], [1, 7, 21, 35, 35, 21, 7, 1],

       [1, 8, 28, 56, 70, 56, 28, 8, 1], [1, 9, 36, 84, 126, 126, 84, 36, 9, 1],

       [1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1]

 

3. Az n szám partíciói a tagok növekvő sorrendjében, ahol 0 ≤ n ≤ 8 (MAPLE):

 

       >with(combinat):

       > seq(partition(n), n=0..8);

 

       [[]], [[1]], [[1, 1], [2]], [[1, 1, 1], [1, 2], [3]],

       [[1, 1, 1, 1], [1, 1, 2], [2, 2], [1, 3], [4]],

       [[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 2, 2], [1, 1, 3], [2, 3], [1, 4], [5]],

       [[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 2, 2], [2, 2, 2], [1, 1, 1, 3],

       [1, 2, 3], [3, 3], [1, 1, 4], [2, 4], [1, 5], [6]],

       [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 2], [1, 1, 1, 2, 2], [1, 2, 2, 2],

       [1, 1, 1, 1, 3], [1, 1, 2, 3], [2, 2, 3], [1, 3, 3], [1, 1, 1, 4], [1, 2, 4],

       [3, 4], [1, 1, 5], [2, 5], [1, 6], [7]],

       [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 2], [1, 1, 1, 1, 2, 2],

       [1, 1, 2, 2, 2], [2, 2, 2, 2], [1, 1, 1, 1, 1, 3], [1, 1, 1, 2, 3], [1, 2, 2, 3],

       [1, 1, 3, 3], [2, 3, 3], [1, 1, 1, 1, 4], [1, 1, 2, 4], [2, 2, 4], [1, 3, 4],

       [4, 4], [1, 1, 1, 5], [1, 2, 5], [3, 5], [1, 1, 6], [2, 6], [1, 7], [8]]

 

4.  A p(n) partíciófüggvény értékei, ahol  0 ≤ n ≤ 20 (MAPLE):

 

       > seq(numbpart(n), n=0..20);

 

       1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627

 

5. Az F_n Fibonacci-számok, ahol 0 ≤ n ≤ 30 (MAPLE):

 

      > with(combinat, fibonacci): seq(fibonacci(n), n=0..30);

 

      0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,

      6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040

 

6. Az L_n Lucas-számok, ahol 0 ≤ n ≤ 30 (MAPLE):

 

      > with(combinat): L_n:=fibonacci(n+1)+fibonacci(n-1): # Lucas-szamok

      > seq(L_n, n=0..30);

 

      2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349,

      15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498

 

7. A C_n Catalan-számok, ahol 0 ≤ n ≤ 30 (MAPLE):

 

     > with(combinat): C_n:=(1/(n+1))*binomial(2*n,n):  # Catalan-szamok

     > seq(C_n, n=0..30);

 

     1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845,

     35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640,

     343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004,

     263747951750360, 1002242216651368, 3814986502092304

 

8. Az {n alatt k} = S(n,k) másodfajú Stirling-számok értékei, ahol 1 ≤ k ≤ n ≤ 10  (MAPLE):

 

    > with(combinat): seq([seq(stirling2(n,k), k=1..n)], n=1..10);

 

    [1], [1, 1], [1, 3, 1], [1, 7, 6, 1], [1, 15, 25, 10, 1], [1, 31, 90, 65, 15, 1],

    [1, 63, 301, 350, 140, 21, 1], [1, 127, 966, 1701, 1050, 266, 28, 1],

    [1, 255, 3025, 7770, 6951, 2646, 462, 36, 1],

    [1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1]

 

9. A B(n) Bell-számok értékei, ahol 1 ≤ n ≤ 20 (MAPLE):

 

    > with(combinat): seq(bell(n), n=1..20);

      

    1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322,

    1382958545, 10480142147, 82864869804, 682076806159, 5832742205057, 51724158235372

 

10. Az [n alatt k] = s(n,k) elsőfajú Stirling-számok értékei, ahol 1 ≤ k ≤ n ≤ 10 (MAPLE):

 

     > with(combinat): seq([(abs(stirling1(n,k)), k=1..n)], n=1..10);

 

     [1], [1, 1], [2, 3, 1], [6, 11, 6, 1], [24, 50, 35, 10, 1],

     [120, 274, 225, 85, 15, 1], [720, 1764, 1624, 735, 175, 21, 1],

     [5040, 13068, 13132, 6769, 1960, 322, 28, 1],

     [40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1],

     [362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1]

 

11. A (-1)^{n-k} [n alatt k] = (-1)^{n-k} s(n,k) elsőfajú algebrai Stirling-számok értékei, ahol 1 ≤ k ≤ n ≤ 10 (MAPLE):

 

       > with(combinat): seq([seq(stirling1(n,k), k=1..n)], n=1..10);

     

       [1], [-1, 1], [2, -3, 1], [-6, 11, -6, 1], [24, -50, 35, -10, 1],

       [-120, 274, -225, 85, -15, 1], [720, -1764, 1624, -735, 175, -21, 1],

       [-5040, 13068, -13132, 6769, -1960, 322, -28, 1],

       [40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1],

       [-362880, 1026576, -1172700, 723680, -269325, 63273, -9450, 870, -45, 1]